Thermal conductivity enhancement of aluminum scandium nitride grown by molecular beam epitaxy

Materials Research Letters(2023)

引用 0|浏览7
暂无评分
摘要
Aluminum scandium nitride (AlScN) has been receiving increasing interest for radio frequency microelectromechanical systems because of their higher achievable bandwidths owing to the larger piezoelectric response of AlScN compared to AlN. However, alloying scandium (Sc) with aluminum nitride (AlN) significantly lowers the thermal conductivity of AlScN due to phonon alloy scattering. Self-heating in AlScN devices potentially limits power handling, constrains the maximum transmission rate, and ultimately leads to thermal failure. We grew plasma-assisted molecular beam epitaxy (PAMBE) AlScN on AlN-Al2O3 and GaN-Al2O3 substrates, and compared the cross-plane thermal conductivity to current work on AlScN grown on Si substrates. [GRAPHICS]
更多
查看译文
关键词
aluminum scandium nitride,thermal conductivity enhancement,molecular beam epitaxy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要