谷歌浏览器插件
订阅小程序
在清言上使用

Chronic arsenite exposure induced skeletal muscle atrophy by disrupting angiotensin II-melatonin axis in rats

Wanying Chen,Dapeng Wang,Lu Ma, Fan Wu, Qian Ren,Junyan Tao,Xiong Chen,Aihua Zhang

Environmental toxicology(2024)

引用 0|浏览18
暂无评分
摘要
Arsenic is a well-known environmental toxicant and emerging evidence suggests that arsenic exposure has potential skeletal muscle toxicity; however, the underlying mechanism has not yet been clarified. The aim of this study was to investigate the correlation among adverse effects of subchronic and chronic environmental arsenic exposure on skeletal muscle as well as specific myokines secretion and angiotensin II (AngII)-melatonin (MT) axis in rats. Four-week-old rats were exposed to arsenite (iAs) in drinking water at environmental relevant concentration of 10 ppm for 3 or 9 months. Results indicated that the gastrocnemius muscle had atrophied and its mass was decreased in rats exposed to arsenite for 9 months, whereas, they had no significant changes in rats exposed to arsenite for 3 months. The levels of serum-specific myokine irisin and gastrocnemius muscle insulin-like growth factor-1 (IGF-1) were increased in 3-month exposure group and decreased in 9-month exposure group, while serum myostatin (MSTN) was increased significantly in 9-month exposure group. In addition, serum AngII level increased both in 3- and 9-month exposure groups, while serum MT level increased in 3-month exposure group and decreased in 9-month exposure group. Importantly, the ratio of AngII to MT level in serum increased gradually with the prolongation of arsenite exposure. It showed a certain correlation between AngII-MT axis and gastrocnemius muscle mass, gastrocnemius muscle level of IGF-1 or serum levels of irisin and MSTN. In conclusion, the disruption of AngII-MT axis balance may be a significant factor for skeletal muscle atrophy induced by chronic environmental arsenic exposure.
更多
查看译文
关键词
angiotensin II-melatonin axis,arsenite,myokines,skeletal muscle atrophy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要