Molecular mechanism analysis of ZmRL6 positively regulating drought stress tolerance in maize

Pengyu Zhang,Tongchao Wang, Liru Cao,Zhixin Jiao, Lixia Ku,Dandan Dou, Zhixue Liu,Jiaxu Fu, Xiaowen Xie,Yingfang Zhu, Leelyn Chong,Li Wei

Stress Biology(2023)

引用 0|浏览3
暂无评分
摘要
MYB-related genes, a subclass of MYB transcription factor family, have been documented to play important roles in biological processes such as secondary metabolism and stress responses that affect plant growth and development. However, the regulatory roles of MYB-related genes in drought stress response remain unclear in maize. In this study, we discovered that a 1R-MYB gene, ZmRL6 , encodes a 96-amino acid protein and is highly drought-inducible. We also found that it is conserved in both barley ( Hordeum vulgare L . ) and Aegilops tauschii . Furthermore, we observed that overexpression of ZmRL6 can enhance drought tolerance while knock-out of ZmRL6 by CRISPR-Cas9 results in drought hypersensitivity. DAP-seq analyses additionally revealed the ZmRL6 target genes mainly contain ACCGTT, TTACCAAAC and AGCCCGAG motifs in their promoters. By combining RNA-seq and DAP-seq results together, we subsequently identified eight novel target genes of ZmRL6 that are involved in maize's hormone signal transduction, sugar metabolism, lignin synthesis, and redox signaling/oxidative stress. Collectively, our data provided insights into the roles of ZmRL6 in maize’s drought response.
更多
查看译文
关键词
ZmRL6,1R-MYB,MYB-related genes,Drought stress,Maize
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要