Modular access to alkylgermanes via reductive germylative alkylation of activated olefins under nickel catalysis

Nature communications(2023)

引用 0|浏览0
暂无评分
摘要
Carbon-introducing difunctionalization of C-C double bonds enabled by transition-metal catalysis is one of most straightforward and efficient strategies to construct C-C and C-X bonds concurrently from readily available feedstocks towards structurally diverse molecules in one step; however, analogous difunctionalization for introducing germanium group and other functionalities remains elusive. Herein, we describe a nickel-catalyzed germylative alkylation of activated olefins with easily accessible primary, secondary and tertiary alkyl bromides and chlorogermanes as the electrophiles to form C-Ge and C-C alkyl bonds simultaneously. This method provides a modular and facile approach for the synthesis of a broad range of alkylgermanes with good functional group compatibility, and can be further applied to the late-stage modification of natural products and pharmaceuticals, as well as ligation of drug fragments. More importantly, this platform enables the expedient synthesis of germanium substituted ospemifene-Ge-OH, which shows improved properties compared to ospemifene in the treatment of breast cancer cells, demonstrating high potential of our protocol in drug development.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要