Photoredox/Enzymatic Catalysis Enabling Redox-Neutral Decarboxylative Asymmetric C-C Coupling for Asymmetric Synthesis of Chiral 1,2-Amino Alcohols

JACS Au(2023)

引用 0|浏览6
暂无评分
摘要
Photocatalysis offers tremendous opportunities for enzymes to access new functions. Herein, we described a redox-neutral photocatalysis/enzymatic catalysis system for the asymmetric synthesis of chiral 1,2-amino alcohols via decarboxylative radical C-C coupling of N-arylglycines and aldehydes by combining an organic photocatalyst, eosin Y, and carbonyl reductase RasADH. Notably, this protocol avoids using any sacrificial reductants. A possible reaction mechanism proposed is that the transformation proceeds through sequential photoinduced decarboxylative radical addition to an aldehyde and a photoenzymatic deracemization pathway. This redox-neutral photoredox/enzymatic strategy is promising not only for effective synthesis of a series of chiral amino alcohols in a green and sustainable manner but also for the design of other novel C-C radical coupling transformations for the synthesis of bioactive molecules.
更多
查看译文
关键词
asymmetric catalysis, photoredox catalysis, enzymatic catalysis, radical C-C coupling, deracemization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要