Deep immunoglobulin repertoire sequencing depicts a comprehensive atlas of spike-specific antibody lineages shared among COVID-19 convalescents

EMERGING MICROBES & INFECTIONS(2024)

引用 0|浏览9
暂无评分
摘要
Neutralizing antibodies are a key component in protective humoral immunity against SARS-CoV-2. Currently, available technologies cannot track epitope-specific antibodies in global antibody repertoires. Thus, the comprehensive repertoire of spike-specific neutralizing antibodies elicited by SARS-CoV-2 infection is not fully understood. We therefore combined high-throughput immunoglobulin heavy chain (IgH) repertoire sequencing, and structural and bioinformatics analysis to establish an antibodyomics pipeline, which enables tracking spike-specific antibody lineages that target certain neutralizing epitopes. We mapped the neutralizing epitopes on the spike and determined the epitope-preferential antibody lineages. This analysis also revealed numerous overlaps between immunodominant neutralizing antibody-binding sites and mutation hotspots on spikes as observed so far in SARS-CoV-2 variants. By clustering 2677 spike-specific antibodies with 360 million IgH sequences that we sequenced, a total of 329 shared spike-specific antibody clonotypes were identified from 33 COVID-19 convalescents and 24 SARS-CoV-2-naive individuals. Epitope mapping showed that the shared antibody responses target not only neutralizing epitopes on RBD and NTD but also non-neutralizing epitopes on S2. The immunodominance of neutralizing antibody response is determined by the occurrence of specific precursors in human naive B-cell repertoires. We identified that only 28 out of the 329 shared spike-specific antibody clonotypes persisted for at least 12 months. Among them, long-lived IGHV3-53 antibodies are likely to evolve cross-reactivity to Omicron variants through accumulating somatic hypermutations. Altogether, we created a comprehensive atlas of spike-targeting antibody lineages in COVID-19 convalescents and antibody precursors in human naive B cell repertoires, providing a valuable reference for future vaccine design and evaluation.
更多
查看译文
关键词
SARS-CoV-2,spike,antibodyomics,antibody repertoire,epitope mapping,lineage tracking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要