Improvement of rimocidin production in Streptomyces rimosus M527 by reporter-guided mutation selection

Journal of Industrial Microbiology & Biotechnology(2022)

引用 0|浏览0
暂无评分
摘要
In this study, we employed a reporter-guided mutation selection (RGMS) strategy to improve the rimocidin production of Streptomyces rimosus M527, which is based on a single-reporter plasmid pAN and atmospheric and room temperature plasma (ARTP). In plasmid pAN, PrimA, a native promoter of the loading module of rimocidin biosynthesis (RimA) was chosen as a target, and the kanamycin resistance gene (neo) under the control of PrimA was chosen as the reporter gene. The integrative plasmid pAN was introduced into the chromosome of S. rimosus M527 by conjugation to yield the initial strain S. rimosus M527-pAN. Subsequently, mutants of M527-pAN were generated by ARTP. 79 mutants were obtained in total, of which 67 mutants showed a higher level of kanamycin resistance (Kanr) than that of the initial strain M527-pAN. The majority of mutants exhibited a slight increase in rimocidin production compared with M527-pAN. Notably, 3 mutants, M527-pAN-S34, S38, and S52, which exhibited highest kanamycin resistance among all Kanr mutants, showed 34%, 52%, and 45% increase in rimocidin production compared with M527-pAN, respectively. Quantitative RT-PCR analysis revealed that the transcriptional levels of neo and rim genes were increased in mutants M527-pAN-S34, S38, and S52 compared with M527-pAN. These results confirmed that the RGMS approach was successful in improving the rimocidin production in S. rimosus M527.
更多
查看译文
关键词
rimocidin production,mutation selection,reporter-guided
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要