337 Targeting metabolic and epigenetic programs to re-sensitize glioblastoma to chemotherapy

Journal of clinical and translational science(2023)

引用 0|浏览0
暂无评分
摘要
OBJECTIVES/GOALS: Treatment options for glioblastoma (GBM) are limited. Prognosis remains dismal, with an 18 month on average survival rate following diagnosis due to treatment resistance and disease recurrence. The goal of this project is to investigate hallmarks of cancer progression that contribute to temozolomide (TMZ) resistance, a first tine treatment for GBM. METHODS/STUDY POPULATION: Two signaling pathways were investigated in TMZ-sensitive and -resistant GBM cell lines and in primary and recurrent patient-derived xenograft (PDX) tumor cells by genetically and pharmacologically inhibiting methionine adenosyltransferase 2A (MAT2A) and adenosylhomocysteinase (AHCY). Cell growth and survival were assessed by measuring protein expression of proliferation, oxidative stress and cell cycle arrest markers. EPIC array analysis and targeted bisulfite sequencing were conducted to identify changes in genome-wide and specific CpG island methylation. The Seahorse XF Analyzer measured mitochondrial respiratory capacity and oxidative metabolism. Induced pluripotent stem cell organoids were co-cultured with PDX tumor cells to determine if treatments mitigate tumor cell invasiveness. RESULTS/ANTICIPATED RESULTS: Compared to parental cells (PC), MAT2A gene expression was increased by 1.7-fold in acquired resistant and de novo resistant GBM cells (RC) [(transcript per million): PC, 7386 ± 0.012; RC, 12925 ± 0.023; n=2; p=2.10e-8]. Compared to TMZ-sensitive cells (TS), TMZ-resistant cells (TR) demonstrated a 56% increase in baseline oxygen consumption rate [(pmol/min): TS, 179 ± 6.7; TR, 279 ± 13; n=18; p=.0012] and 64% increase in maximal respiratory capacity [(pmol/min): TS, 403 ± 29; TR, 659 ± 35; n=6; p DISCUSSION/SIGNIFICANCE: MAT2A and AHCY contribute to TMZ resistance and recurrence by dysregulating methylation programs and upregulating antioxidant programs, respectively. These findings provide a foundation for developing novel combinatory therapeutic strategies and inform clinical studies intended to increase remission and reduce recurrence for GBM patients.
更多
查看译文
关键词
glioblastoma,epigenetic programs,chemotherapy,re-sensitize
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要