FTIR study of H2O in silicate minerals and mineral inclusions in chromite from the peridotite zone of the Stillwater complex (Montana, USA): Evidence for chromitite formation in an H2O-rich environment

Geological Society of America Bulletin(2023)

引用 1|浏览3
暂无评分
摘要
Although the involvement of hydrous fluids has been frequently invoked in the formation of stratiform chromitites in layered intrusions, there is a lack of natural evidence to signify their presence and mechanism. Here, Fourier-transform infrared spectroscopy (FTIR) of H2O in silicate minerals in the lowermost layer and G chromitite layer of the Stillwater complex, Montana, USA, shows that olivine grains have 20−55 ppm H2O, orthopyroxene has 30−45 ppm H2O, and clinopyroxene has 144−489 ppm H2O. The jointly increasing H2O contents of olivine and orthopyroxene in silicate cumulates along with magma differentiation record a negative correlation in chromitites. On the basis of poikilitic clinopyroxene, we calculated that the interstitial melts had averages of 1.3 wt% and 2.3 wt% H2O in dunite and chromitite, respectively, showing significant differences between chromitites and silicate cumulates. More than 10% of the chromite grains contained polymineralic inclusions up to 100 μm in size that were composed mainly of orthopyroxene, hornblende, plagioclase, and phlogopite. Most of these minerals were characterized by higher MgO and fluid-mobile element contents, such as Na and K, than minerals in associated silicates. Based on the mineral modes of the hydrous phases and their compositions, the trapped fluids contained ∼2.6 wt% H2O, consistent with the FTIR estimates, indicating the inclusion compositions represent interstitial melts instead of parental magmas. These observations indicate that the chromite microlites collected fluids during early crystallization, leading to a heterogeneous fluid redistribution in the melt. The fluids were collected on the surface of chromite grains during crystallization and then dissolved into poikilitic pyroxene. Chromite grains could also be efficiently floated by these fluids, causing them to migrate away from the silicate minerals in the magma channel and leading to the formation of nearly monomineralic chromitite seams. This process serves as a kinetic model indicating that chromite could be completely separated from silicates during mechanical sorting in layered intrusions.
更多
查看译文
关键词
silicate minerals,chromitite formation,chromite,peridotite zone,o-rich
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要