An Attention-based Bidirectional LSTM Model for Continuous Cross-Subject Estimation of Knee Joint Angle during Running from sEMG Signals

2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC(2023)

引用 0|浏览0
暂无评分
摘要
Accurate and robust estimation of joint kinematics via surface electromyogram (sEMG) signals provides a human-machine interaction (HMI)-based method that can be used to adequately control rehabilitation robots while performing complex movements, such as running, for motor function restoration in affected individuals. To this end, this paper proposes a deep learning-based model ( AM-BiLSTM) that integrates a bidirectional long short-term memory (BiLSTM) network and an attention mechanism (AM) for robust estimation of joint kinematics. The proposed model was appraised using knee joint kinematic and sEMG signals collected from fourteen subjects who performed running at the speed of 2 m/s. The proposed model's generalizability was tested for both within- and cross-subject scenarios and compared with long short-term memory (LSTM) and multi-layer perceptron (MLP) networks in terms of normalized root-mean-square error and correlation coefficient metrics. Based on the statistical tests, the proposed AM-BiLSTM model significantly outperformed the LSTM and MLP methods in both within- and cross-subject scenarios (p<0.05) and achieved state-of-the-art performance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要