Phospholipid Molecular Layer that Enhances Distinction of Odors Based on Artificial Sniffing

ACS sensors(2023)

引用 0|浏览2
暂无评分
摘要
We propose a novel odor-sensing system based on the dynamic response of phospholipid molecular layers for artificial olfaction. Organisms obtain information about their surroundings based on multidimensional information obtained from sniffing, i.e., periodic perturbations. Semiconductor- and receptor-based odor sensors have been developed previously. However, these sensors predominantly identify odors based on one-dimensional information, which limits the type of odor molecule they can identify. Therefore, the development of odor sensors that mimic the olfactory systems of living organisms is useful to overcome this limitation. In this study, we developed a novel odor-sensing system based on the dynamics of phospholipids that responds delicately to chemical substances at room temperature using multidimensional information obtained from periodic perturbations. Odor molecules are periodically supplied to the phospholipid molecular layer as an input sample. The waveform of the surface tension of the phospholipid molecular layer changes depending on the odor molecules and serves as an output. Such characteristic responses originating from the dynamics of odor molecules on the phospholipid molecular layer can be reproduced numerically. The phospholipid molecular layer amplified the information originating from the odor molecule, and the mechanism was evaluated by using surface pressure-area isotherms. This paper offers a platform for an interface-chemistry-based artificial sniffing system as an active sensor and a novel olfactory mechanism via physicochemical responses of the receptor-independent membranes of the organism.
更多
查看译文
关键词
sniffing,surface tension,phospholipid molecularlayer,odor sensing,dynamic response
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要