Photo-Thermal Mediated Li-ion Transport for Solid-State Lithium Metal Batteries

SMALL(2023)

引用 0|浏览1
暂无评分
摘要
The development of lithium-based solid-state batteries (SSBs) has to date been hindered by the limited ionic conductivity of solid polymer electrolytes (SPEs), where nonsolvated Li-ions are difficult to migrate in a polymer framework at room temperature. Despite the improved cationic migration by traditional heating systems, they are far from practical applications of SSBs. Here, an innovative strategy of light-mediated energy conversion is reported to build photothermal-based SPEs (PT-SPEs). The results suggest that the nanostructured photothermal materials acting as a powerful light-to-heat converter enable heating within a submicron space, leading to a decreased Li+ migration barrier and a stronger solid electrolyte interface. Via in situ X-ray diffraction analysis and molecular dynamics simulation, it is shown that the generated heating effectively triggers the structural transition of SPEs from a highly crystalline to an amorphous state, that helps mediate lithium-ion transport. Using the assembled SSBs for exemplification, PT-SPEs function as efficient ion-transport media, providing outstanding capacity retention (96% after 150 cycles) and a stable charge/discharge capacity (140 mA g-1 at 1.0 C). Overall, the work provides a comprehensive picture of the Li-ion transport in solid polymer electrolytes and suggests that free volume may be critical to achieving high-performance solid-state batteries. Photothermal-mediated polymer electrolyte opens a brand-new way to enhance the electrochemical performance of solid-state batteries. In situ XRD and MD simulation prove that the generated heating is the primary cause of triggering the amorphous transition and then results in an accelerated Li+ ion diffusion and a LiF-rich SEI, thereby significantly enabling decent cycling stability (a marginal decay of 4% for 150 cycles).image
更多
查看译文
关键词
conducting polymer electrolytes,interfacial properties,photothermal effect,solid-state lithium batteries,transport mechanism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要