Human telomere length is chromosome specific and conserved across individuals.

Kayarash Karimian, Aljona Groot, Vienna Huso, Ramin Kahidi,Kar-Tong Tan,Samantha Sholes, Rebecca Keener,John F McDyer,Jonathan K Alder,Heng Li,Andreas Rechtsteiner,Carol W Greider

bioRxiv : the preprint server for biology(2024)

引用 0|浏览2
暂无评分
摘要
Short telomeres cause age-related disease and long telomeres predispose to cancer; however, the mechanisms regulating telomere length are unclear. To probe these mechanisms, we developed a nanopore sequencing method, Telomere Profiling, that is easy to implement, precise, and cost effective with broad applications in research and the clinic. We sequenced telomeres from individuals with short telomere syndromes and found similar telomere lengths to the clinical FlowFISH assay. We mapped telomere reads to specific chromosome end and identified both chromosome end-specific and haplotype-specific telomere length distributions. In the T2T HG002 genome, where the average telomere length is 5kb, we found a remarkable 6kb difference in lengths between some telomeres. Further, we found that specific chromosome ends were consistently shorter or longer than the average length across 147 individuals. The presence of conserved chromosome end-specific telomere lengths suggests there are new paradigms in telomere biology that are yet to be explored. Understanding the mechanisms regulating length will allow deeper insights into telomere biology that can lead to new approaches to disease.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要