谷歌浏览器插件
订阅小程序
在清言上使用

Synergistic Effect of Ion Doping and Type-II Heterojunction Construction and Ciprofloxacin Degradation by MIL-68(In,Bi)-NH2@BiOBr under Visible Light

ACS APPLIED MATERIALS & INTERFACES(2024)

引用 0|浏览9
暂无评分
摘要
Heterojunction structure and ion doping techniques are viable tactics in facilitating the generation and separation of photogenerated electrons and holes in photocatalysis. In the current study, a novel Bi ion-doped MIL-68(In,Bi)-NH2@BiOBr (MIBN@BOB) type-II heterojunction was first synthesized in a one-step solvothermal reaction. Doping of Bi ions not only broadened the light-sensing range but also provided reliable anchor sites for the in situ growth of BiOBr. Meanwhile, the heterostructure supplied new channels for photogenerated carriers, accelerating the transfer and inhibiting the recombination of photogenerated electron-hole. The obtained MIBN@BOB exhibited enhanced photocatalytic performance (91.1%) than MIL-68(In)-NH2 (40.8%) and BiOBr (57.5%) in ciprofloxacin (CIP) degradation under visible light, with excellent reusability. Photocatalysts were characterized in detail, and a series of photoelectrochemical tests were utilized to analyze the photoelectric properties. MIBN@BOB were deduced to conform the electron conduction mechanism of conventional type-II heterojunctions. More importantly, based on the above experiments and density functional theory (DFT) calculation, BiOBr-Bi in MIBN@BOB can serve as the major active sites of CIP enrichment, and center dot O-2(-) and O-1(2) generated at the BiOBr interface can react with the adsorbed CIP directly. Lastly, the possible degradation products and pathways of CIP were analyzed by liquid chromatography-tandem mass spectrometry (LC/MS/MS). This study provides a reference for the construction of ion-doping-modified metal-organic framework (MOF)-based heterojunction photocatalysts and their application in antibiotic removal.
更多
查看译文
关键词
heterojunction photocatalysts,ion doping,MIL-68(In)-NH2,BiOBr,DFT calculation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要