谷歌浏览器插件
订阅小程序
在清言上使用

A Sustainable and Self-Healable Silk Fibroin Nanocomposite with Antibacterial and Drug Eluting Properties for 3D Printed Wound Dressings.

Sana Sheybanikashani,Nooshin Zandi, Danial Hosseini,Roya Lotfi,Abdolreza Simchi

Journal of materials chemistry B(2024)

引用 0|浏览5
暂无评分
摘要
The development of self-healable and 3D printable hydrogels with decent biocompatibility, mechanical durability, adhesiveness to tissues, and antibacterial activity is of great importance for wound healing applications. In this study, we present a sustainable and environmentally friendly composite hydrogel consisting of silk fibroin (SF), oxidized salep (OS), and kappa carrageenan nanoparticles (NPs) for efficient wound care. The injectable nanocomposite hydrogel is highly stretchable and exhibits strong tissue adhesiveness and self-healing response through Schiff-base cross-linking between OS and SF. The tunable shear-thinning viscoelastic properties of the hydrogel facilitate 3D bioprinting with excellent shape adaptability (97.7 ± 1.1% recovery), enabling the fabrication of complex-shaped constructs. In vitro release kinetics of tetracycline (TC) encapsulated in kappa carrageenan NPs indicate a distinctive Korsmeyer-Peppas profile, including an initial burst release followed by a triphasic pattern controlled by the embedded NPs within the hydrogel matrix. The composite hydrogel shows a remarkable broad-spectrum antibacterial activity with substantial zones of inhibition against S. aureus (34.00 ± 1.00 mm) and E. coli (27.60 ± 2.08 mm) after 24 h of incubation at 37 °C. The addition of TC further enhances the zones of inhibition by approximately 45% for S. aureus and 27% for E. coli. The control group without kappa NP incorporation shows no zone of inhibition, underscoring the critical role of the nanoparticles in imparting antibacterial activity to the hydrogel. Cytocompatibility assays show the high viability of fibroblast (L929) cells (>90%) in vitro. In vivo biocompatibility studies through subcutaneous implantation also do not show malignancy, infection, abscess, necrosis, epidermal or dermal modifications, or inflammation of the wounds after 14 days post-injection. H&E staining shows that the biodegradation of the developed hydrogel facilitates the growth of non-inflammatory cells, leading to the substitution of the injected hydrogel with autologous tissue. The detailed analyses affirm that the multifunctional injectable hydrogel with self-healing and antibacterial properties has high potential for wound healing and skin tissue engineering.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要