Genome-wide bioinformatics analysis of human protease capacity for proteolytic cleavage of the SARS-CoV-2 spike glycoprotein

MICROBIOLOGY SPECTRUM(2024)

引用 0|浏览2
暂无评分
摘要
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) primarily enters the cell by binding the virus's spike (S) glycoprotein to the angiotensin-converting enzyme 2 receptor on the cell surface, followed by proteolytic cleavage by host proteases. Studies have identified furin and transmembrane protease serine 2 proteases in priming and triggering cleavages of the S glycoprotein, converting it into a fusion-competent form and initiating membrane fusion, respectively. Alternatively, SARS-CoV-2 can enter the cell through the endocytic pathway, where activation is triggered by lysosomal cathepsin L. However, other proteases are also suspected to be involved in both entry routes. In this study, we conducted a genome-wide bioinformatics analysis to explore the capacity of human proteases in hydrolyzing peptide bonds of the S glycoprotein. Predictive models of sequence specificity for 169 human proteases were constructed and applied to the S glycoprotein together with the method for predicting structural susceptibility to proteolysis of protein regions. After validating our approach on extensively studied S2 ' and S1/S2 cleavage sites, we applied our method to each peptide bond of the S glycoprotein across all 169 proteases. Our results indicate that various members of the proprotein convertase subtilisin/kexin type, type II transmembrane family serine protease, and kallikrein families, as well as specific coagulation factors, are capable of cleaving S2 ' or S1/S2 sites. We have also identified a potential cleavage site of cathepsin L at the K790 position within the S2 ' loop. Structural analysis suggests that cleavage of this site induces conformational changes similar to the cleavage at the R815 (S2 ') position, leading to the exposure of the fusion peptide and subsequent fusion with the membrane. Other potential cleavage sites and the influence of mutations in common SARS-CoV-2 variants on proteolytic efficiency are discussed.IMPORTANCEThe entry of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) into the cell, activated by host proteases, is considerably more complex in coronaviruses than in most other viruses and is not fully understood. There is evidence that other proteases beyond the known furin and transmembrane protease serine 2 can activate the spike protein. Another example of uncertainty is the cleavage site for the alternative endocytic route of SARS-CoV-2 entrance, which is still unknown. Bioinformatics methods, modeling protease specificity and estimating the structural susceptibility of protein regions to proteolysis, can aid in studying this topic by predicting the involved proteases and their cleavage sites, thereby substantially reducing the amount of experimental work. Elucidating the mechanisms of spike protein activation is crucial for preventing possible future coronavirus pandemics and developing antiviral drugs. The entry of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) into the cell, activated by host proteases, is considerably more complex in coronaviruses than in most other viruses and is not fully understood. There is evidence that other proteases beyond the known furin and transmembrane protease serine 2 can activate the spike protein. Another example of uncertainty is the cleavage site for the alternative endocytic route of SARS-CoV-2 entrance, which is still unknown. Bioinformatics methods, modeling protease specificity and estimating the structural susceptibility of protein regions to proteolysis, can aid in studying this topic by predicting the involved proteases and their cleavage sites, thereby substantially reducing the amount of experimental work. Elucidating the mechanisms of spike protein activation is crucial for preventing possible future coronavirus pandemics and developing antiviral drugs.
更多
查看译文
关键词
SARS-CoV-2,spike glycoprotein,proteolytic activation,protease,proteolysis,furin,TMPRSS2,cathepsin L,PCSK,TTSP
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要