piOxi database: a web resource of germline and somatic tissue piRNAs identified by chemical oxidation

DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION(2024)

引用 0|浏览5
暂无评分
摘要
PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs that are highly expressed and extensively studied from the germline. piRNAs associate with PIWI proteins to maintain DNA methylation for transposon silencing and transcriptional gene regulation for genomic stability. Mature germline piRNAs have distinct characteristics including a 24- to 32-nucleotide length and a 2MODIFIER LETTER PRIME-O-methylation signature at the 3MODIFIER LETTER PRIME end. Although recent studies have identified piRNAs in somatic tissues, they remain poorly characterized. For example, we recently demonstrated notable expression of piRNA in the murine soma, and while overall expression was lower than that of the germline, unique characteristics suggested tissue-specific functions of this class. While currently available databases commonly use length and association with PIWI proteins to identify piRNA, few have included a chemical oxidation method that detects piRNA based on its 3MODIFIER LETTER PRIME modification. This method leads to reproducible and rigorous data processing when coupled with next-generation sequencing and bioinformatics analysis. Here, we introduce piOxi DB, a user-friendly web resource that provides a comprehensive analysis of piRNA, generated exclusively through sodium periodate treatment of small RNA. The current version of piOxi DB includes 435 749 germline and 9828 somatic piRNA sequences robustly identified from M. musculus, M. fascicularis and H. sapiens. The database provides species- and tissue-specific data that are further analyzed according to chromosome location and correspondence to gene and repetitive elements. piOxi DB is an informative tool to assist broad research applications in the fields of RNA biology, cancer biology, environmental toxicology and beyond.Database URL: https://pioxidb.dcmb.med.umich.edu/
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要