Internal regulation between constitutively expressed T cell coinhibitory receptors BTLA and CD5 and tolerance in recent thymic emigrants

biorxiv(2024)

引用 0|浏览2
暂无评分
摘要
Several coinhibitory receptors are upregulated upon activation, whereas a small number of coinhibitory receptors are expressed constitutively by naive T cells. The relationship between constitutively expressed coinhibitors is unknown. We found an inverse relationship between two constitutively expressed coinhibitors, CD5 and BTLA; BTLA expression was low in the thymus and high in the periphery, corresponding respectively with high and low CD5 expression. Germline or induced deletion of Btla in somatic cells demonstrated a causal relationship between BTLA expression and CD5 levels in T cells of central and peripheral lymphoid tissues. The effect of BTLA on CD5 expression on thymic and peripheral CD4 T cells was due to BTLA signaling, rather than signaling by its ligand, the herpes virus mediator (HVEM). Regulation was maintained in mice with a non-signaling HVEM mutant but was lost in Tnfrsf14-/- (Hvem-/-) mice. Increased CD5 levels have been positively associated with increased recognition of self-peptide MHC complexes. Thus, control of CD5 expression by BTLA signals early in T cell ontogeny suggested that BTLA might be important for establishing self-tolerance in newly generated T cells. Consistent with this concept, we found that BTLA, as well as the inducible coinhibitor PD-1, were needed post thymic selection in recent thymic emigrants (RTE) to establish self-tolerance. RTE lacking BTLA caused a multiorgan autoimmune disease whose development required CD4 T cells and MHC class II. Together, our findings identify a negative regulatory pathway allowing constitutively expressed coinhibitory receptors to calibrate their expression in thymic T cell differentiation. Expression of constitutive and induced coinhibitory receptors is needed to establish tolerance in the periphery for RTE. ### Competing Interest Statement Louis Boon is CSO and board member at JJP Biologics, a company developing HVEM targeting approaches in oncology.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要