Facet-Dependent Photocatalytic Behavior of Rutile TiO2 for the Degradation of Volatile Organic Compounds: In Situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Density Functional Theory Investigations

Wenjie Zhou,Fang Chen,Mengmeng Li,Qin Cheng, Juan Deng, Pengcheng Wang,Mengdie Cai,Song Sun

LANGMUIR(2024)

引用 0|浏览0
暂无评分
摘要
In this study, a custom rutile titanium dioxide (TiO2) photocatalyst with a single exposed surface was utilized to investigate the facet-dependent photocatalytic mechanism of toluene. The degradation of toluene was dynamically monitored using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) technology coupled with theoretical calculations. The findings demonstrated that the photocatalytic degradation rate on the TiO2 (001) surface was nearly double that observed on the TiO2 (110) surface. This remarkable enhancement can be attributed to the heightened stability in the adsorption of toluene molecules and the concurrent reduction in the energy requirement for the ring-opening process of benzoic acid on the TiO2 (001) surface. Moreover, the TiO2 (001) surface generated a greater number of reactive oxygen species (ROS), thereby promoting the separation of photogenerated charge carriers and concurrently diminishing their recombination rates, amplifying the efficiency of photocatalysis. This research provides an innovative perspective for a more comprehensive understanding of the photocatalytic degradation mechanism of TiO2 and presents promising prospects for significant applications in environmental purification and energy fields.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要