PM2.5-bound heavy metals in a typical industrial city of Changzhi in North China: Pollution sources and health risk assessment

ATMOSPHERIC ENVIRONMENT(2024)

引用 0|浏览5
暂无评分
摘要
Heavy metal contamination in fine particulate matter (PM2.5) emitted in industrial cities is extremely severe. Hence, determining their pollution sources apportionment is critical to inform effective pollution control strategies for reducing the risks associated with heavy metals in PM2.5. This study comprehensively investigated the characteristics, source apportionment, and health risks associated with heavy metals in PM2.5 at three monitoring stations-Jiance, Qinghua, and Shenjiju-in Changzhi, a typical industry city in China, during three seasons: autumn and winter of 2017 and summer of 2018. The daily average concentrations of PM2.5 (65.68 mu gm 3) during the study period were lower than the second-grade limit value established in China (75 mu g m 3). The highest mean PM2.5 concentrations were observed during winter (72.45 mu gm 3) and at the Jiance station (64.51 mu g m 3), respectively. At Qinghua station, vehicle emissions contributed more V to PM2.5, whereas Jiance station showed higher levels of Pb and Zn from coal combustion. In autumn, there was an increased in the Fe content in PM2.5 from vehicle emissions, whereas elevated concentrations of Cr and Ni from industry sources were observed in summer. According to the results of a positive matrix factorization, the main sources of PM2.5-bound heavy metals in Changzhi were coal combustion (34.3%), vehicle emissions (30.9%), fugitive dust (21.8%) and industry (13.0%). The major sources during autumn, winter, and summer were vehicle emissions (39.0%), coal combustion (35.0%), and industrial emissions (61.7%), respectively, showing a clear seasonal pattern. At both the Jiance station and Shenjiju station, extensive coal-based heating was the primary source of emissions, whereas vehicle emissions were the main source of emissions at QH owing to its high levels of traffic. The total hazard quotient (HQ) values for heavy metals were below the safe level (HQ = 1); but the carcinogenic risks (CR) exceed the lower limit of tolerance (1E-6). Stronger emissions from industrial sources in summer and the large amount of coal combustion for heating at the Jiance station are possible reasons for the higher health risk of heavy metals. Identification the source of PM2.5-bound heavy metals could support the targeted reduction of associated emissions, consequently helping alleviate heavy metals contamination and control associated risks to human health.
更多
查看译文
关键词
PM2.5-bound heavy metals,Pollution characteristics,Source apportionment,Source-specific health risk,Changzhi
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要