Generation of a photothermally responsive antimicrobial, bioadhesive gelatin methacryloyl (GelMA) based hydrogel through 3D printing for infectious wound healing

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES(2024)

引用 0|浏览8
暂无评分
摘要
Recently, photothermal nanomaterials has attracted enormous interests owing to their enhanced therapeutic effects and less adverse effects in the treatment of infectious diseases. Herein, this work presents a photothermally responsive antimicrobial, bioadhesive hydrogel through three dimensions (3D) printing technology for treatment the wound infection. The hydrogel is based on a visible-light-activated naturally derived polymer (GelMA), GelMA grafted with dopamine (GelMA-DA) and the polydopamine coated reduced graphene oxide (rGO@PDA), which can provide the multifunctional such as photothermal antibacterial, antioxidant, conductivity, adhesion and hemostasis performance to accelerate wound healing. The developed hydrogel shown the excellent adhesion capability to adhere the in vitro physiological tissues and glass surface. Moreover, the fabricated hydrogel also exhibited excellent cytocompatibility to L929 cells which is a vital biofunction for efficiently promoting cell proliferation and migration in vitro. The hydrogel also showed remarkable photothermally responsive antimicrobial capability against two strains (99.3 % antibacterial ratio for E. coli and 98.6 % antibacterial ratio for S. aureus). Furthermore, it could support the wound repair and regeneration of S. aureus infected full-thickness wound defects in rats. Overall, the 3D printed hydrogel could be used as a photothermal platform for the development of more effective therapies against the infected wound.
更多
查看译文
关键词
Hydrogel dressing,3D printing,Photothermal effect,Antibacterial therapy,Wound healing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要