谷歌浏览器插件
订阅小程序
在清言上使用

Pyrenecarboxaldehyde@Graphene Oxide Acted As a Highly Efficient ECL Emitter and Target-Triggered the Recyclable Cascade System As an Amplifier for Ultrasensitive APE1 Activity Detection.

ACS sensors(2024)

引用 0|浏览5
暂无评分
摘要
Herein, pyrenecarboxaldehyde@graphene oxide (Pyc@GO) sheets with highly efficient electrochemiluminescence (ECL) as emitters were prepared by a noncovalent combination to develop a neoteric ECL biosensing platform for the ultrasensitive assessment of human apurinic/apyrimidinic endonuclease1 (APE1) activity. Impressively, the pyrenecarboxaldehyde (Pyc) molecules were able to form stable polar functional groups on the surface of GO sheets through the noncovalent π-π stacking mechanism to prevent intermolecular restacking and simultaneously generate Pyc@GO sheets. Compared with the tightly packed PAH nanocrystals, the Pyc@GO sheets significantly reduced internal filtering effects and diminished nonactivated emitters to enhance ECL intensity and achieve strong ECL emission. Furthermore, the APE1-activated initiators could trigger the recyclable cascade amplified system based on the synergistic cross-activation between catalytic hairpin assembly (CHA) and DNAzyme, which improved the signal amplification and transduction ability. Consequently, the developed ECL platform for the detection of APE1 activity displayed exceptional sensitivity with a low detection limit of 4.6 × 10-9 U·mL-1 ranging from 10-8 to 10-2 U·mL-1. Therefore, the proposed strategy holds great promise for the future development of sensitive and reliable biosensing platforms for the detection of various biomarkers.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要