Boundary-induced topological chiral extended states in Weyl metamaterial waveguides

arxiv(2024)

引用 0|浏览3
暂无评分
摘要
In topological physics, it is commonly understood that the existence of the boundary states of a topological system is inherently dictated by its bulk. A classic example is that the surface Fermi arc states of a Weyl system are determined by the chiral charges of Weyl points within the bulk. Contrasting with this established perspective, here, we theoretically and experimentally discover a family of topological chiral bulk states extending over photonic Weyl metamaterial waveguides, solely induced by the waveguide boundaries, independently of the waveguide width. Notably, these bulk states showcase discrete momenta and function as wormhole tunnels that connect Fermi-arc surface states living in different two dimensional spaces via a third dimension. Our work offers a magneticfield-free mechanism for robust chiral bulk transport of waves and highlights the boundaries as a new degree of freedom to regulate bulk Weyl quasiparticles.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要