Giant low-field magnetocaloric effect in unstable antiferromagnetic Tm1–xErxNi2Si2 (x = 0.2, 0.4) compounds

Journal of Rare Earths(2024)

引用 0|浏览5
暂无评分
摘要
Magnetic refrigeration (MR) technology is regarded as an ideal solution for cryogenic applications, relying on magnetocaloric materials which provide necessary chilling effect. A series of polycrystalline Tm1–xErxNi2Si2 (x = 0.2, 0.4) compounds was synthesized, and their magnetic properties, magnetic phase transition together with magnetocaloric effect (MCE) were studied. The Tm1–xErxNi2Si2 (x = 0.2, 0.4) compounds display a field-induced metamagnetic transition from antiferromagnetic (AFM) to ferromagnetism (FM) in excess of 0.2 T, respectively. Meanwhile, the AFM ground state is unstable. Under the field change of 0–2 T, the values of maximal magnetic entropy change (−ΔSMmax) and refrigerant capacity (RC) for Tm0.8Er0.2Ni2Si2 compound are 17.9 J/(kg·K) and 83.5 J/kg, respectively. The large reversible MCE under low magnetic fields (≤2 T) indicates that Tm0.8Er0.2Ni2Si2 compound can serve as potential candidate materials for cryogenic magnetic refrigeration.
更多
查看译文
关键词
Magnetocaloric materials,Magnetocaloric effects,Cryogenic magnetic refrigeration,TmNi2Si2,Rare earths
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要