Engineering Co-N-Cr Cross-Interfacial Electron Bridges to Break Activity-Stability Trade-Off for Superdurable Bifunctional Single Atom Oxygen Electrocatalysts

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION(2024)

引用 0|浏览3
暂无评分
摘要
Atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts have exhibited encouraging oxygen reduction reaction (ORR) activity. Nevertheless, the insufficient long-term stability remains a widespread concern owing to the inevitable 2-electron byproducts, H2O2. Here, we construct Co-N-Cr cross-interfacial electron bridges (CIEBs) via the interfacial electronic coupling between Cr2O3 and Co-N-C, breaking the activity-stability trade-off. The partially occupied Cr 3d-orbitals of Co-N-Cr CIEBs induce the electron rearrangement of CoN4 sites, lowering the Co-OOH* antibonding orbital occupancy and accelerating the adsorption of intermediates. Consequently, the Co-N-Cr CIEBs suppress the two-electron ORR process and approach the apex of Sabatier volcano plot for four-electron pathway simultaneously. As a proof-of-concept, the Co-N-Cr CIEBs is synthesized by the molten salt template method, exhibiting dominant 4-electron selectively and extremely low H2O2 yield confirmed by Damjanovic kinetic analysis. The Co-N-Cr CIEBs demonstrates impressive bifunctional oxygen catalytic activity (E=0.70 V) and breakthrough durability including 100 % current retention after 10 h continuous operation and cycling performance over 1500 h for Zn-air battery. The hybrid interfacial configuration and the understanding of the electronic coupling mechanism reported here could shed new light on the design of superdurable M-N-C catalysts. A cross-interfacial electronic bridges (CIEBs) is constructed via interfacial electronic coupling between Cr2O3 and Co-N-C, breaking the trade-off between activity and stability. The partially occupied Cr 3d-orbitals of Co-N-Cr CIEBs induce the electron rearrangement of CoN4 sites, lowering the Co-OOH* antibonding orbital occupancy and accelerating the adsorption of intermediates. Consequently, the Co-N-Cr CIEBs suppress the two-electron ORR process and approach the apex of Sabatier volcano plot for four-electron pathway simultaneously.+ image
更多
查看译文
关键词
Cross-interfacial electron bridges,D-orbital electron rearrangement,Activity-stability trade-off,Single atom catalysts,Oxygen reduction and evolution reaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要