谷歌浏览器插件
订阅小程序
在清言上使用

Galactinol Regulates JA Biosynthesis to Enhance Tomato Cold Tolerance.

Journal of agricultural and food chemistry(2024)

引用 0|浏览16
暂无评分
摘要
Low temperatures can inhibit plant growth and development and reduce fruit yield. This study demonstrated that the expression of AnGolS1 from Ammopiptanthus nanus (A. nanus) encoding a galactinol synthase enhanced tomato cold tolerance. In AnGolS1-overexpressing plants, the jasmonic acid (JA) biosynthesis substrates 13-hydroperoxylinolenicacid and 12,13-epoxylinolenicacid were significantly accumulated, and the expression levels of the ethylene response factor (SlERF4-7) and serine protease inhibitor (SlSPI5) were increased. We speculated that there may be correlations among galactinol, ethylene signaling, the protease inhibitor, protease, and JA levels. The expression levels of SlERF4-7 and SlSPI5 as well as the JA content were significantly increased under exogenous galactinol treatment. Additionally, the expression of SlSPI5 was reduced in SlERF4-7-silenced plants, and SlERF4-7 was confirmed to bind to the dehydration-responsive element (DRE) of the SlSPI5 promoter. These results suggest that SlSPI5 is a target gene of the SlERF4-7 transcription factor. In addition, SlSPI5 interacted with cysteine protease (SlCPase), while SlCPase interacted with lipoxygenase (SlLOX5) and allene oxide synthase (SlAOS2). When SlCPase was silenced, JA levels increased and plant cold tolerance was enhanced. Therefore, galactinol regulates JA biosynthesis to enhance tomato cold tolerance through the SlERF4-7-SlSPI5-SlCPase-SlLOX5/SlAOS2 model. Overall, our study provides new perspectives on the role of galactinol in the JA regulatory network in plant adaptation to low-temperature stress.
更多
查看译文
关键词
galactinol,tomato,jasmonic acid(JA),ethylene response factor,cold tolerance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要