Study of computational sensing using frequency-domain compression

Xiao Zhang, Haozhe Zhong, Liangqi Cao

OPTICS EXPRESS(2024)

引用 0|浏览2
暂无评分
摘要
The computational sensing and imaging technique has been extended from spatial domain to temporal domain for capturing fast light signals with a slow photodetector. However, temporal computational sensing based on random source/modulation has to require a lot of measurements to reconstruct an object signal with acceptable SNR. In this paper, we study the frequency-domain acquisition technique for capturing a nanosecond temporal object with ten Hertz detection bandwidth. The frequency-domain acquisition technique offers a SNR gain of N, where N denotes the point number of Fourier spectrum. Because of the compressibility of data and the orthogonality and completeness of Fourier basis, it enables the reconstruction based on sub-Nyquist sampling. Because the slow detection only has low temporal resolution capability, the frequency-domain acquisition technique could provide robustness and is immune to the temporal distortion in experiments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要