谷歌浏览器插件
订阅小程序
在清言上使用

A Self-Regulated Network for Dynamically Balancing Multiple Precursors in Complex Biosynthetic Pathways.

Metabolic engineering(2024)

引用 0|浏览22
暂无评分
摘要
Microbial synthesis has emerged as a promising and sustainable alternative to traditional chemical synthesis and plant extraction. However, the competition between synthetic pathways and central metabolic pathways for cellular resources may impair final production efficiency. Moreover, when the synthesis of target product requires multiple precursors from the same node, the conflicts of carbon flux have further negative impacts on yields. In this study, a self-regulated network was developed to relieve the competition of precursors in complex synthetic pathways. Using 4-hydroxycoumarin (4-HC) synthetic pathway as a proof of concept, we employed an intermediate as a trigger to dynamically rewire the metabolic flux of pyruvate and control the expression levels of genes in 4-HC synthetic pathway, achieving self-regulation of multiple precursors and enhanced titer. Transcriptomic analysis results additionally demonstrated that the gene transcriptional levels of both pyruvate kinase PykF and synthetic pathway enzyme SdgA dynamically changed according to the intermediate concentrations. Overall, our work established a self-regulated network to dynamically balance the metabolic flux of two precursors in 4-HC biosynthesis, providing insight into balancing biosynthetic pathways where multiple precursors compete and interfere with each other.
更多
查看译文
关键词
Biosynthesis,Dynamic regulation,Multiple precursors,4-Hydroxycoumarin,Genetic biosensors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要