谷歌浏览器插件
订阅小程序
在清言上使用

Design of a Low Voltage TCNQ-Pd-Co@NC-Modified Electrode–Based NADH Sensor

Electrocatalysis(2024)

引用 0|浏览0
暂无评分
摘要
The present work involves the design and validation of an electrochemical sensor for precise and selective sensing of nicotinamide adenine dinucleotide (NADH). The designed electrochemical sensor consists of TCNQ and Pd-Co@NC nanocomposite–modified electrodes (TCNQ-Pd-Co@NC/CPE). The designed electrode was validated by cyclic voltammetry, amperometry, and electrochemical impedance spectroscopy (EIS). The results revealed potent electrocatalytic activity towards NADH oxidation and sensing. Cyclic voltammetry revealed the superior capability of TCNQ-Pd-Co@NC-based carbon paste electrode in electron transfer than TCNQ-Co@NC/CPE and TCNQ/CPE, validating better conductivity of TCNQ-Pd-Co@NC/CPE for NADH sensing. Amperometry study provided a wide linear range of 10 to 250 µM for NADH detection with a low detection limit (LOD) of 5.17 µM and a sensitivity of 21.5 µA mM. EIS study revealed the lowest R ct value of 12.5 × 10 2 for TCNQ-Pd-Co@NC/CPE compared to TCNQ-Co@NC/CPE and TCNQ/CPE, demonstrating high electron transfer capability and thus sensitivity towards NADH. Besides this, the modified TCNQ-Pd-Co@NC-based carbon paste electrodes offered exceptional selectivity, reproducibility, and stability over time. Therefore, designed TCNQ-Pd-Co@NC nanocomposite–based carbon paste electrodes can be efficiently used for precise and selective NADH sensing. Graphical Abstract
更多
查看译文
关键词
Pd-Co@NC nanocomposite,NADH sensor,Electrocatalysis,Cyclic voltammetry,Hydrothermal synthesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要