Cleavage efficiency of the intramembrane protease -secretase is reduced by the palmitoylation of a substrate's transmembrane domain

FASEB JOURNAL(2024)

引用 0|浏览0
暂无评分
摘要
The intramembrane protease gamma-secretase has broad physiological functions, but also contributes to Notch-dependent tumors and Alzheimer's disease. While gamma-secretase cleaves numerous membrane proteins, only few nonsubstrates are known. Thus, a fundamental open question is how gamma-secretase distinguishes substrates from nonsubstrates and whether sequence-based features or post-translational modifications of membrane proteins contribute to substrate recognition. Using mass spectrometry-based proteomics, we identified several type I membrane proteins with short ectodomains that were inefficiently or not cleaved by gamma-secretase, including 'pituitary tumor-transforming gene 1-interacting protein' (PTTG1IP). To analyze the mechanism preventing cleavage of these putative nonsubstrates, we used the validated substrate FN14 as a backbone and replaced its transmembrane domain (TMD), where gamma-cleavage occurs, with the one of nonsubstrates. Surprisingly, some nonsubstrate TMDs were efficiently cleaved in the FN14 backbone, demonstrating that a cleavable TMD is necessary, but not sufficient for cleavage by gamma-secretase. Cleavage efficiencies varied by up to 200-fold. Other TMDs, including that of PTTG1IP, were still barely cleaved within the FN14 backbone. Pharmacological and mutational experiments revealed that the PTTG1IP TMD is palmitoylated, which prevented cleavage by gamma-secretase. We conclude that the TMD sequence of a membrane protein and its palmitoylation can be key factors determining substrate recognition and cleavage efficiency by gamma-secretase. The intramembrane protease gamma-secretase has broad physiological functions. However, a fundamental open question is how gamma-secretase distinguishes substrates from nonsubstrates and whether sequence-based features or post-translational modifications of membrane proteins contribute to substrate recognition. Using mass spectrometry-based proteomics and domain swap experiments, this study demonstrates that palmitoylation within the C-terminal half of a substrate's transmembrane domain constitutes a new mechanism that can suppress cleavage by gamma-secretase.image
更多
查看译文
关键词
FXYD3,FXYD6,intramembrane proteolysis,LYRIC,PMEPA1,protease substrate specificity,TNR12,Tweak receptor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要