Electrical transport behavior of the oxygen vacancies-rich LaAlO3/SrTiO3 heterogeneous interface at high temperature

Dianbing Luo,Yunhai Chen, Yifei Wang, Xinyu Cao, Phyo Aung,Kexin Jin,Shuanhu Wang

JOURNAL OF PHYSICS-CONDENSED MATTER(2024)

引用 0|浏览2
暂无评分
摘要
Oxygen vacancy is one of the original mechanisms of the two-dimensional electron gas (2DEG) at the LaAlO3 (LAO) and SrTiO3 (STO) heterogeneous interface, and it has an important impact on the electrical properties of LAO/STO heterojunction. In this work, the LAO thin films were grown on the STO substrates by pulsed laser deposition, and the electrical transport behavior of the LAO/STO interface at high temperature and high vacuum were systematically studied. It was found that at high temperature and high vacuum, the oxygen vacancies-rich LAO/STO heterojunction would undergo a metal-insulator transition, and return to metal conductivity when the temperature is further increased. At this time, the conduction mechanism of the sample is drift mode and the thermal activation energy is 0.87 eV. While during the temperature decreasing, the conduction mechanism would transfer to hopping conduction with the thermal activation energy of 0.014 eV and the resistance would increase dramatically and present a completely insulated state. However, when the oxygen vacancies-rich sample is exposed to air, the resistance would gradually decrease and recover.
更多
查看译文
关键词
oxygen vacancy,two-dimensional electron gas,metal-insulation transition,disorder degree
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要