Hall mobilities and sheet carrier densities in a single LiNbO3 conductive ferroelectric domain wall

PHYSICAL REVIEW APPLIED(2023)

引用 0|浏览5
暂无评分
摘要
In the last decade, conductive domain walls (CDWs) in single crystals of the uniaxial model ferroelectric lithium niobate (LiNbO3; LNO) have been shown to reach resistances more than 10 orders of magnitude lower than the resistance of the surrounding bulk, with charge carriers being firmly confined to sheets with a width of a few nanometers. LNO is thus currently witnessing increased attention because of its potential in the design of room-temperature nanoelectronic circuits and devices based on such CDWs. In this context, the reliable determination of the fundamental transport parameters of LNO CDWs, in particular the 2D charge carrier density n2D and the Hall mobility mu H of the majority carriers, is of great interest. In this contribution, we present and apply a robust and easy-to-prepare Hall-effect measurement setup by adapting the standard four-probe van der Pauw method to contact a single, hexagonally shaped domain wall that fully penetrates the 200 -mu m-thick LNO bulk single crystal. We then determine n2D and mu H for a set of external magnetic fields B and prove the expected cosinelike angular dependence of the Hall voltage. Lastly, we present photoinduced-Hall-effect measurements of one and the same DW, by determining the impact of super-band-gap illumination on n2D.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要