Reduced graphene oxide-based chemiresistive NO2 sensor: metal oxide nanoparticles decoration effect

2023 IEEE SENSORS(2023)

引用 0|浏览1
暂无评分
摘要
We present the development of a stretchable platform-based nitrogen dioxide (NO2) gas sensor that operates at room temperature (RT). This study investigates the impact of incorporating metal oxide nanoparticles (NPs) into a chemiresistive NO2 gas sensor, utilizing reduced graphene oxide (rGO) as the primary sensing material. By introducing mesoporous ZnFe2O4 (ZFO) NPs at different concentrations into the rGO sensing layer, the performance of the gas sensor is significantly enhanced. The inclusion of ZFO NPs, which possess high-density defect sites, contributes to fast response and recovery times across a wide range of NO2 concentrations (150 to 4000 ppb). Various transient parameters are analyzed to assess the effects of ZFO NPs integration. The rGO-ZFO-based gas sensor exhibits improved sensitivity and reproducibility. Moreover, these sensors, integrated into a stretchable platform and capable of RT operation, open possibilities for the development of advanced wearable NO2 gas sensors in the future.
更多
查看译文
关键词
reduced graphene oxide,metal oxide nanoparticles,room-temperature operable,NO2 gas sensor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要