MXene-Embedded Porous Carbon-Based Cu2O Nanocomposites for Non-Enzymatic Glucose Sensors

Tami Selvi Gopal, Jaimson T. James, Bharath Gunaseelan, Karthikeyan Ramesh,Vimala Raghavan, Christina Josephine A. Malathi, K. Amarnath,V. Ganesh Kumar, Sofia Jennifer Rajasekaran,Saravanan Pandiaraj, M. R. Muthumareeswaran,Sudhagar Pitchaimuthu,Chamil Abeykoon,Abdullah N. Alodhayb,Andrews Nirmala Grace

ACS OMEGA(2024)

引用 0|浏览0
暂无评分
摘要
This work explores the use of MXene-embedded porous carbon-based Cu2O nanocomposite (Cu2O/M/AC) as a sensing material for the electrochemical sensing of glucose. The composite was prepared using the coprecipitation method and further analyzed for its morphological and structural characteristics. The highly porous scaffold of activated (porous) carbon facilitated the incorporation of MXene and copper oxide inside the pores and also acted as a medium for charge transfer. In the Cu2O/M/AC composite, MXene and Cu2O influence the sensing parameters, which were confirmed using electrochemical techniques such as cyclic voltammetry, electrochemical impedance spectroscopy, and amperometric analysis. The prepared composite shows two sets of linear ranges for glucose with a limit of detection (LOD) of 1.96 mu M. The linear range was found to be 0.004 to 13.3 mM and 15.3 to 28.4 mM, with sensitivity values of 430.3 and 240.5 mu A mM(-1) cm(-2), respectively. These materials suggest that the prepared Cu2O/M/AC nanocomposite can be utilized as a sensing material for non-enzymatic glucose sensors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要