Two-dimensional photonic crystal cavities in ZnSe quantum well structures

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
ZnSe and related materials like ZnMgSe and ZnCdSe are promising II-VI host materials for optically mediated quantum information technology such as single photon sources or spin qubits. Integrating these heterostructures into photonic crystal (PC) cavities enables further improvements, for example realizing Purcell-enhanced single photon sources with increased quantum efficiency. Here we report on the successful implementation of two-dimensional (2D) PC cavities in strained ZnSe quantum wells (QW) on top of a novel AlAs supporting layer. This approach overcomes typical obstacles associated with PC membrane fabrication in strained materials, such as cracks and strain relaxation in the corresponding devices. We demonstrate the attainment of the required mechanical stability in our PC devices, complete strain retainment and effective vertical optical confinement. Structural analysis of our PC cavities reveals excellent etching anisotropy. Additionally, elemental mapping in a scanning transmission electron microscope confirms the transformation of AlAs into AlOx by post-growth wet oxidation and reveals partial oxidation of ZnMgSe at the etched sidewalls in the PC. This knowledge is utilized to tailor FDTD simulations and to extract the ZnMgSe dispersion relation with small oxygen content. Optical characterization of the PC cavities with cross-polarized resonance scattering spectroscopy verifies the presence of cavity modes. The excellent agreement between simulation and measured cavity mode energies demonstrates wide tunability of the PC cavity and proves the pertinence of our model. This implementation of 2D PC cavities in the ZnSe material system establishes a solid foundation for future developments of ZnSe quantum devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要