Unraveling the complexity of the Dzyaloshinskii-Moriya interaction in layered magnets: Towards its full magnitude and chirality control

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Chirality is an inherent characteristics of some objects in nature. In magnetism chiral magnetic textures can be formed in systems with broken inversion symmetry and due to an antisymmetric magnetic interaction, known as Dzyaloshinskii–Moriya interaction (DMI). Here, aiming on a fundamental understanding of this chiral interaction on the atomic scale, we design several synthetic layered structures composed of alternating atomic layers of 3d ferromagnetic metals epitaxially grown on Ir(001). We demonstrate both experimentally and theoretically that the atomistic DMI depends critically not only on the orbital occupancy of the interface magnetic layer but also on the sequence of the atomic layers. The effect is attributed to the complexity of the electronic structure and the contribution of different orbitals to the hybridization and DMI. We anticipate that our results provide guidelines for controlling both the chirality and the magnitude of the atomistic DMI.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要