谷歌浏览器插件
订阅小程序
在清言上使用

Critical Contribution of Chemically Diverse Carbonyl Molecules to the Oxidative Potential of Atmospheric Aerosols

ATMOSPHERIC CHEMISTRY AND PHYSICS(2024)

引用 0|浏览11
暂无评分
摘要
Carbonyls have an important effect on atmospheric chemistry and human health because of their high electrophilicity. Here, high-throughput screening of carbonyl molecules in complex aerosol samples was achieved by combining targeted derivatization with non-targeted analysis using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Results showed that water-soluble organic matter (WSOM) in PM2.5 contains a large variety of carbonyls (5147 in total), accounting for 17.6 % of all identified organic molecules. Compared with non-carbonyl molecules, carbonyl molecules are more abundant in winter than in summer and have unique molecular composition and chemical parameters. For the first time, a significant positive correlation was found between the abundance of carbonyl molecules and the dithiothreitol (DTT) activities of WSOM, and the elimination of the carbonyl group remarkably reduced the DTT activities, highlighting the pivotal role of carbonyls in determining the oxidative potential (OP) of organic aerosol. Among various molecules, oxidized aromatic compounds containing the carbonyl group produced in winter contributed more to the enhancement of DTT activity, which could be used as potential markers of atmospheric oxidative stress. This study improves our understanding of the chemical diversity and environmental health effects of atmospheric carbonyls, emphasizing the need for targeted strategies to mitigate the health risks associated with carbonyl-rich aerosols.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要