Harnessing the advances of MEDA to optimise multi-PUF for enhancing IP security of biochips

Journal of King Saud University - Computer and Information Sciences(2024)

引用 0|浏览3
暂无评分
摘要
Digital microfluidic biochips (DMFBs) have a significant stride in the applications of medicine and the biochemistry in recent years. DMFBs based on micro-electrode-dot-array (MEDA) architecture, as the next-generation DMFBs, aim to overcome drawbacks of conventional DMFBs, such as droplet size restriction, low accuracy, and poor sensing ability. Since the potential market value of MEDA biochips is vast, it is of paramount importance to explore approaches to protect the intellectual property (IP) of MEDA biochips during the development process. In this paper, an IP authentication strategy based on the multi-PUF applied to MEDA biochips is presented, called bioMPUF, consisting of Delay PUF, Split PUF and Countermeasure. The bioMPUF strategy is designed to enhance the non-linearity between challenges and responses of PUFs, making the challenge-response pairs (CRPs) on the MEDA biochips are difficult to be anticipated, thus thwarting IP piracy attacks. Moreover, based on the easy degradation of MEDA biochip electrodes, a countermeasure is proposed to destroy the availability of piracy chips. Experimental results demonstrate the feasibility of the proposed bioMPUF strategy against the brute force attack and modeling attack.
更多
查看译文
关键词
MEDA biochips,Multi-PUF,IP protection,Hardware security,Modeling attack
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要