Green photocatalytic mixed matrix membranes for simultaneous arsenic photo-oxidation and water recovery via membrane distillation

Separation and Purification Technology(2024)

引用 0|浏览0
暂无评分
摘要
This work proposes an innovative integration of Membrane Distillation (MD) and photo-oxidation for a continuous recovery of water from arsenic (As) contaminated solutions coupled with the oxidation of arsenite (As(III)) into arsenate (As(V)). Polyvinylidene fluoride (PVDF) mixed matrix membranes (MMMs) containing titanium dioxide nanoparticles (TiO2 NPs) as photocatalyst were developed. A systematic study elucidated the effect of TiO2 NPs on membranes’ morphology prepared via non-solvent-induced phase separation (NIPS) using triethyl phosphate (TEP) as a green solvent for PVDF solubilization. Vacuum membrane distillation (VMD) tests carried out by irradiating the MMMs with ultraviolet (UV) radiation demonstrated the possibility of recovering up to 80 % of the water from As-contaminated synthetic and real multi-ions aqueous solutions from Sila Massif (Italy). The distillate was recovered at a rate of 6.9–7.2 kg·m−2·h−1 (feed inlet temperature of 60 °C), while the presence of 7 wt% of TiO2 in PVDF membranes enabled the photo-oxidation of 95 % of the As(III) to As(V) at a first order kinetic constant of 0.0106 min−1. After 5 cycles of As-remediation experiments, post-hoc mechanical testing on the membrane suggested the emergence of polymer embrittlement induced by UV radiation (total irradiation time of 7.5 h), highlighting the urgent need for developing photocatalytic membranes with long-term stability.Overall, this study elucidates at laboratory scale the performance of a coupled and continuous Membrane Distillation (MD) and photo-oxidation system for arsenic (As) remediation, employing microporous hydrophobic green membranes doped with a photocatalyst.
更多
查看译文
关键词
Arsenic,Green Solvent,Membrane Distillation,Photocatalytic Membranes,Photo-oxidation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要