谷歌浏览器插件
订阅小程序
在清言上使用

Decoding auditory working memory content from EEG aftereffects of auditory-cortical TMS

crossref(2024)

引用 0|浏览13
暂无评分
摘要
Working memory (WM), short term maintenance of information for goal directed behavior, is essential to human cognition. Identifying the neural mechanisms supporting WM is a focal point of neuroscientific research. One prominent theory hypothesizes that WM content is carried in a dynamic fashion, involving an “activity-silent” brain state based on synaptic facilitation. Information carried in such activity-silent brain states could be decodable from content-specific changes in responses to unrelated “impulse stimuli”. A potential method for such impulses is single-pulse transcranial magnetic stimulation (TMS) with its focal, precise nature. Here, we tested the activity-silent model by combining TMS/EEG and multivariate pattern analysis (MVPA) with a non-conceptual auditory WM task that employed parametric ripple sound stimuli and a retro-cue design. Our MVPA employed between-subject cross-validation and robust non- parametric permutation testing. The decoding accuracy of WM content significantly increased after a single pulse TMS was delivered to the posterior superior temporal cortex during WM maintenance. Our results are compatible with the theory that WM maintenance involves brain states which are effectively “activity-silent” relative to other intrinsic processes visible in the EEG signal. Single-pulse TMS combined with MVPA could provide a powerful way to decode information content of “activity-silent” brain states involved in WM. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要