Unraveling CO adsorption behaviors and its poisoning effects on ZrCo surface

Yuejing Lan, Ru Tang,Rongxing Ye, Minan Su, Qianghua Lei,Fei Li,Xiaofeng Tian,Jiangfeng Song,Linsen Zhou

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2024)

引用 0|浏览0
暂无评分
摘要
Theoretical calculations are performed to elucidate the adsorption behaviors and poisoning effects of CO gas on the ZrCo surface, which drastically limits its application in hydrogen isotopic storage. Specifically, the ionic Zr-Co bond on the surface leads to unique CO adsorption structures on different sites. The CO molecule tends to prefer a tilted adsorption configuration on the Co-Co bridge site. The electronic structures, charge distributions, and bonding characteristics are further explored to study the CO adsorption properties, which obey the electron density donation and back-donation mechanism. For different CO coverages, the stepwise adsorption energies of CO increase with the increasing of coverage, reaching the saturated coverage at nCO = 11. Then, the effects of temperature and partial pressure on CO coverage are evaluated using atomic thermodynamics. The computed phase diagram shows that the ZrCo(110) surface has a stable coverage of nCO = 6 at ambient temperature under ultrahigh vacuum conditions. The pre-adsorbed CO molecules lead to the charge redistribution and the d-band center downshift on the surface, which significantly affect hydrogen adsorption and dissociation. Our results provide insights into the poisoning mechanisms of the impurity gas on ZrCo alloys, which can be beneficial for designing high-performance ZrCo-based alloys with improved poisoning tolerance. Unraveling CO adsorption behaviors and its poisoning effects on the ZrCo surface.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要