Privacy Amplification for the Gaussian Mechanism via Bounded Support

CoRR(2024)

引用 0|浏览13
暂无评分
摘要
Data-dependent privacy accounting frameworks such as per-instance differential privacy (pDP) and Fisher information loss (FIL) confer fine-grained privacy guarantees for individuals in a fixed training dataset. These guarantees can be desirable compared to vanilla DP in real world settings as they tightly upper-bound the privacy leakage for a specific individual in an actual dataset, rather than considering worst-case datasets. While these frameworks are beginning to gain popularity, to date, there is a lack of private mechanisms that can fully leverage advantages of data-dependent accounting. To bridge this gap, we propose simple modifications of the Gaussian mechanism with bounded support, showing that they amplify privacy guarantees under data-dependent accounting. Experiments on model training with DP-SGD show that using bounded support Gaussian mechanisms can provide a reduction of the pDP bound ϵ by as much as 30 negative effects on model utility.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要