Data from Quinacrine Overcomes Resistance to Erlotinib by Inhibiting FACT, NF-κB, and Cell-Cycle Progression in Non–Small Cell Lung Cancer

crossref(2023)

引用 0|浏览2
暂无评分
摘要
Abstract

Erlotinib is a tyrosine kinase inhibitor approved for the treatment of patients with advanced non–small cell lung cancer (NSCLC). In these patients, erlotinib prolongs survival but its benefit remains modest because many tumors express wild-type (wt) EGFR or develop a second-site EGFR mutation. To test drug combinations that could improve the efficacy of erlotinib, we combined erlotinib with quinacrine, which inhibits the FACT (facilitates chromatin transcription) complex that is required for NF-κB transcriptional activity. In A549 (wtEGFR), H1975 (EGFR-L858R/T790M), and H1993 (MET amplification) NSCLC cells, this drug combination was highly synergistic, as quantified by Chou–Talalay combination indices, and slowed xenograft tumor growth. At a sub-IC50 but more clinically attainable concentration of erlotinib, quinacrine, alone or in combination with erlotinib, significantly inhibited colony formation and induced cell-cycle arrest and apoptosis. Quinacrine decreased the level of active FACT subunit SSRP1 and suppressed NF-κB–dependent luciferase activity. Knockdown of SSRP1 decreased cell growth and sensitized cells to erlotinib. Moreover, transcriptomic profiling showed that quinacrine or combination treatment significantly affected cell-cycle–related genes that contain binding sites for transcription factors that regulate SSRP1 target genes. As potential biomarkers of drug combination efficacy, we identified genes that were more strongly suppressed by the combination than by single treatment, and whose increased expression predicted poorer survival in patients with lung adenocarcinoma. This preclinical study shows that quinacrine overcomes erlotinib resistance by inhibiting FACT and cell-cycle progression, and supports a clinical trial testing erlotinib alone versus this combination in advanced NSCLC. Mol Cancer Ther; 13(9); 2203–14. ©2014 AACR.

更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要