Improving Fairness in Photovoltaic Curtailments via Daily Topology Reconfiguration for Voltage Control in Power Distribution Networks

CoRR(2024)

引用 0|浏览0
暂无评分
摘要
In PV-rich power distribution systems, over-voltage issues are often addressed by curtailing excess generation from PV plants (in addition to reactive power control), raising fairness concerns. Existing fairness-aware control schemes tackle this problem by incorporating fairness objectives into the cost function. However, such schemes result in increased overall curtailments. This paper proposes a solution through daily topology reconfiguration, ensuring that different PV plants face varying grid conditions each day, leading to different curtailment levels and enhancing fairness. We illustrate that implementing this approach enhances overall fairness without significantly increasing overall curtailments. The optimization problem involves two stages. The day-ahead stage optimizes the network topology using day-ahead forecasts of PV generation and demand, minimizing net curtailment and accounting for fairness based on curtailments from prior days. The real-time stage implements the optimized topology and computes active and reactive power setpoints for the PV plants. Day-ahead grid constraints are modeled using LinDistFlow, and real-time control employs a linearized model with a first-order Taylor approximation. The proposed scheme is numerically validated on several benchmark test cases. Results are compared using the Jain Fairness Index, considering fairness and reconfiguration scenarios.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要