Cattle production strategies to deliver protein with less land and lower environmental impact

Journal of Environmental Management(2024)

引用 0|浏览2
暂无评分
摘要
Global land resources are over-exploited and natural habitats are declining, often driven by expanding livestock production. In Ireland, pastureland for grazing cattle and sheep account for circa 60% of terrestrial land use. The agriculture, forestry and other land use sector (AFOLU) is responsible for 44% of national greenhouse gas (GHG) emissions. A new Grassland Animal response Model (GLAM) was developed to relate livestock-cohort grass and feed requirements to farm-grassland system areas, enhancing environmental assessment of prospective AFOLU configurations. Although land conversion targets are often well-defined, they tend to lack a clear definition of where land sparing can occur. Through analyses of 10 scenarios of milk and beef production and management strategies, we found that displacing beef cows with dairy cows can increase national protein output while sparing up to 0.75 million ha (18%) of grassland (albeit with a minor increase in overseas land requirement for additional concentrate feed). Reducing slaughter age, increasing exports of male dairy calves and increasing grassland use efficiency on beef farms each achieved between 0.19 and 0.32 million ha of land sparing. Sexed semen to achieve more favourable male-female birth ratios had a minor impact. GHG emissions, ammonia emissions and nutrient leaching were only reduced substantially when overall cattle numbers declined, confirming the need for cattle reductions to achieve environmental objectives. Nonetheless, application of GLAM shows potential for improved grass and cattle management to spare good quality land suitable for productive forestry and wetland restoration. This change is urgently needed to generate scalable carbon dioxide removals from the land sector in Ireland, and globally.
更多
查看译文
关键词
Livestock production,Climate change,Land use,Grassland systems,Environmental modelling,LULUCF
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要