Metaharvesting: Emergent energy harvesting by piezoelectric metamaterials

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
Vibration energy harvesting is a technology that enables electric power generation by augmenting vibrating materials or structures with piezoelectric elements. In a recent work, we quantified the intrinsic energy-harvesting availability of a piezoelectric phononic crystal (Piezo-PnC) by calculating its damping ratio across the Brillouin zone and subtracting off the damping ratio of the corresponding non-piezoelectric version of the phononic crystal. It was highlighted that the resulting quantity is indicative of the amount of useful energy available for harvesting and is independent of the finite structure size and boundary conditions and of any forcing conditions. Here we investigate the intrinsic energy harvesting availability of two other material systems chosen to be statically equivalent to a given Piezo-PnC: a piezoelectric locally resonant metamaterial (Piezo-LRM) and a piezoelectric inertially amplified metamaterial (Piezo-IAM). Upon comparing with the intrinsic energy harvesting availability of the Piezo-PnC, we observe an emergence of energy harvesting capacity, a phenomenon we refer to as metaharvesting. This is analogous to the concept of metadamping, except the quantity evaluated is associated with piezoelectric energy harvesting rather than raw dissipation. Our results show that the intrinsic energy harvesting availability is enhanced by local resonances, and enhanced further by inertial amplification. These findings open a pathway towards fundamental design of architectured piezoelectric materials with superior energy harvesting capacity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要