谷歌浏览器插件
订阅小程序
在清言上使用

Selective Enrichment of Methylococcaceae Versus Methylocystaceae Methanotrophs Via Control of Methane Feeding Schemes

biorxiv(2024)

引用 0|浏览6
暂无评分
摘要
Methanotrophs are crucial in keeping environmental CH4 emissions in check. However, the contributions of different groups of methanotrophs at terrestrial CH4-oxidation hotspots, such as the oxic-anoxic interface of rice paddies, have shown considerable inconsistency across observations. To address the knowledge gap regarding this inconsistency, methanotrophic microbiomes were enriched from paddy soils in well-mixed CH4-fed batch reactors under six different incubation conditions, prepared as combinations of two CH4 mixing ratios (0.5 and 10%) and three supplemented Cu2+ concentrations (0, 2, and 10 μM). Monitoring of temporal community shifts in these cultures revealed a dominance of Methylocystis spp. in all 0.5%-CH4 cultures, while methanotrophs affiliated to Gammaproteobacteria dominated the 10%-CH4 cultures that were less consistent both temporally and across conditions. The shotgun metagenome analyses of the 0.5%-CH4 cultures corroborated the Methylocystis dominance and, interestingly, showed that copper deficiency did not select for mmoXYZ-possessing methanotrophs. Instead, a mbn cluster, accounting for approximately 5% of the Methylocystis population, was identified, suggesting the ecological significance of methanobactin in Cu-deficient methanotrophy. These findings underscore the important role of Methylocystis spp. in mitigating emissions from terrestrial CH4 hotspots and suggest the feasibility of directed enrichment and/or isolation of Methylocystis spp. for utilization in, for example, methanobactin and polyhydroxybutyrate production.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要