Chrome Extension
WeChat Mini Program
Use on ChatGLM

Exploring Learning-based Motion Models in Multi-Object Tracking

CoRR(2024)

Cited 0|Views29
No score
Abstract
In the field of multi-object tracking (MOT), traditional methods often rely on the Kalman Filter for motion prediction, leveraging its strengths in linear motion scenarios. However, the inherent limitations of these methods become evident when confronted with complex, nonlinear motions and occlusions prevalent in dynamic environments like sports and dance. This paper explores the possibilities of replacing the Kalman Filter with various learning-based motion model that effectively enhances tracking accuracy and adaptability beyond the constraints of Kalman Filter-based systems. In this paper, we proposed MambaTrack, an online motion-based tracker that outperforms all existing motion-based trackers on the challenging DanceTrack and SportsMOT datasets. Moreover, we further exploit the potential of the state-space-model in trajectory feature extraction to boost the tracking performance and proposed MambaTrack+, which achieves the state-of-the-art performance on DanceTrack dataset with 56.1 HOTA and 54.9 IDF1.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined