Axiomatic Design of a Test Artifact for PBF-LM Machine Capability Monitoring

MACHINES(2024)

引用 0|浏览0
暂无评分
摘要
Powder Bed Fusion Laser Melting (PBF-LM) additive manufacturing technology is expected to have a remarkable impact on the industrial setting, making possible the realization of a metallic component with very complex designs to enhance product performance. However, the industrial use of the PBF-LM system needs a capability monitoring system to ensure product quality. Among the various studies developed, the investigation of methodology for the actual machine capability determination has been faced and still represents an open point. There are multiple authors and institutes proposing different investigation methods, ranging from the realization of samples (ex situ analysis) to installing monitoring devices on the machine (in situ analysis). Compared to other approaches, sample realization allows for assessing how the machine works through specimen analysis, but it is sensitive to the sample design. In this article, we first present an analysis of a well-known test artifact from an Axiomatic Design perspective. Second, based on the customer needs analysis and adjustments with respect to the use of hypothetical additive production lines, a new test artifact with an uncoupled design matrix is introduced. The proposed design has been experimentally tested and characterized using artifact made of Inconel 718 superalloy to evaluate its performance and representativeness in machine capability assessment. The results show an accurate identification of beam offset and scaling factor considering all the building platform positions. In addition, the artifact is characterized by a reduced building time (more than 90% with respect to the reference NIST artifact) and a halved inspection time (from 16 h to 8 h).
更多
查看译文
关键词
additive manufacturing,laser power bed fusion,PBF-LM,L-PBF,machine monitoring,test artifact,ex situ monitoring
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要