Super-resolution reconstruction of γ-ray CT images for PET-enabled dual-energy CT imaging.

Proceedings of SPIE--the International Society for Optical Engineering(2023)

引用 0|浏览6
暂无评分
摘要
Dual-energy computed tomography (DECT) enables material decomposition for tissues and produces additional information for PET/CT imaging to potentially improve the characterization of diseases. PET-enabled DECT (PDECT) allows the generation of PET and DECT images simultaneously with a conventional PET/CT scanner without the need for a second x-ray CT scan. In PDECT, high-energy γ-ray CT (GCT) images at 511 keV are obtained from time-of-flight (TOF) PET data and are combined with the existing x-ray CT images to form DECT imaging. We have developed a kernel-based maximum-likelihood attenuation and activity (MLAA) method that uses x-ray CT images as a priori information for noise suppression. However, our previous studies focused on GCT image reconstruction at the PET image resolution which is coarser than the image resolution of the x-ray CT. In this work, we explored the feasibility of generating super-resolution GCT images at the corresponding CT resolution. The study was conducted using both phantom and patient scans acquired with the uEXPLORER total-body PET/CT system. GCT images at the PET resolution with a pixel size of 4.0 mm × 4.0 mm and at the CT resolution with a pixel size of 1.2 mm × 1.2 mm were reconstructed using both the standard MLAA and kernel MLAA methods. The results indicated that the GCT images at the CT resolution had sharper edges and revealed more structural details compared to the images reconstructed at the PET resolution. Furthermore, images from the kernel MLAA method showed substantially improved image quality compared to those obtained with the standard MLAA method.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要